中国科学网手机版

首页 > 科技 > 资讯 > 文章详情页

中科视拓开源SeetaFace2人脸识别算法

今天,来自中科院计算所的人工智能国家队中科视拓宣布,开源商用级SeetaFace2人脸识别算法。

SeetaFace2采用商业友好的BSD协议,这是在2016年9月开源SeetaFace1.0人脸识别引擎之后,中科视拓在人脸识别领域的又一次自我革命。

中科视拓的人脸识别技术来自于国家万人计划领军人才山世光研究员和国家自然科学基金委杰出青年基金获得者陈熙霖研究员共同领导的中科院计算所视觉信息处理与学习研究组,研究成果先后获得过国家科技进步二等奖一次和国家自然科学二等奖一次,在行业内处于领先水平。

人脸检测 ==> 关键点定位 ==> 人脸特征提取 ==> 特征对比

图1 SeetaFace2开源的人脸识别算法组件

据中科视拓人脸组研发总监李凯周介绍,SeetaFace2包含了完整的人脸检测、面部关键点定位和人脸特征提取与比对模块,还将陆续开源人脸跟踪、闭眼检测等辅助模块。SeetaFace2所有算法提供全部源代码、注释、接口文档以及样例程序,以帮助开发者快速基于SeetaFace2开发应用。

SeetaFace2采用标准C++开发,全部模块均不依赖任何第三方库,支持x86架构(Windows、Linux)和ARM架构(Android)。SeetaFace2支持的上层应用包括但不限于人脸门禁、无感考勤、人脸比对等。

图2 SeetaFace2支持的应用矩阵

SeetaFace2是面向于人脸识别商业落地的里程碑版本,其中人脸检测模块在FDDB上的100个误检条件下可达到超过92%的召回率,面部关键点定位支持5点和81点定位,1比N模块支持数千人规模底库的人脸识别应用。

表1 SeetaFace2各模块基础技术指标

与2016年开源的SeetaFace1.0相比,SeetaFace2在速度和精度两个层面上均有数量级的提升。

表2 SeetaFace2与SeetaFace1.0对比

知人识面辨万物,开源赋能共发展。中科视拓自成立以来,始终致力于降低AI应用门槛,赋能行业共同发展。凝聚着国内顶尖实验室技术成果的SeetaFace2的开源,将成为开发者的阶梯,产业升级的助推器,和行业伙伴一起共同推进人脸识别技术的落地。

SeetaFace2现已通过GitHub开源。

(地址:https://github.com/seetafaceengine/SeetaFace2)

【版权声明】凡本站未注明来源为"中国科学网"的所有作品,均转载、编译或摘编自其它媒体,转载、编译或摘编的目的在于传递更多信息,并不代表本站及其子站赞同其观点和对其真实性负责。其他媒体、网站或个人转载使用时必须保留本站注明的文章来源,并自负法律责任。 中国科学网对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。

 
 
 

分类导航

关于我们 | 网站地图 | 网站留言 | 广告服务 | 联系我们 biz@minimouse.com.cn

版权所有 中国科学网www.minimouse.com.cn